Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

AN ANALYSIS OF NCAP SIDE IMPACT CRASH DATA

1998-05-31
986235
Since 1990, the National Highway Traffic Safety Administration (NHTSA) implemented a dynamic side impact compliance test. This compliance test, Federal Motor Vehicle Safety Standard (FMVSS) No. 214, is a nearly right angle side impact in which the striking vehicle moves at 53.6 kmph into the struck vehicle. In 1997, NHTSA began testing passenger cars in side impact in the New Car Assessment Program (NCAP). In the USA NCAP side impact, the striking vehicle is towed at a 8 kmph higher speed than in the compliance test. An analysis has begun on the data from the first NCAP side impact tests, thirty-two in number. In the crashes, accelerometers were installed in the door and door frames of the struck vehicle. Using the accelerometers on the vehicle structure and in the side impact dummy, the crash event was investigated. One tool used in the investigation was the velocity-versus-time diagram.
Technical Paper

A Three-Dimensional Finite Element Analysis of the Human Brain Under Combined Rotational and Translational Accelerations

1994-11-01
942215
Finite element modelling has been used to study the evolution of strain in a model of the human brain under impulsive acceleration loadings. A cumulative damage measure, based on the calculation of the volume fraction of the brain that has experienced a specific level of stretch, is used as a possible predictor for deformation-related brain injury. The measure is based on the maximum principal strain calculated from an objective strain tensor that is obtained by integration of the rate of deformation gradient with appropriate accounting for large rotations. This measure is used here to evaluate the relative effects of rotational and translational accelerations, in both the sagittal and coronal planes, on the development of strain damage in the brain. A new technique for the computational treatment of the brain-dura interface is suggested and used to alleviate the difficulties in the explicit representation of the cerebrospinal fluid layer existing between the two solid materials.
Technical Paper

A Statistical Analysis of Vehicle Rollover Propensity and Vehicle Stability

1992-02-01
920584
This report documents the accident data collection, processing and analysis methodology used by the National Highway Traffic Safety Administration (NHTSA) in a major agency agency investigation of the rollover propensity of light duty vehicles. Specifically, these efforts were initiated in response to two petitions for rulemaking requesting the development of a standard for rollover stability. Logistic regression models were used to investigate the ability of a number of stability measures to predict vehicle rollover propensity, while accounting for a number of driver and environmental factors. It is not the intent of this paper to document formal agency policy in the area of any possible rulemaking efforts, and as such, references to these activities are not discussed. The reader can obtain information on this activity through normal agency procedures.
Technical Paper

A Simple, Practical Method of Assessing Foam Padding Materials for Head Impact Protection

1986-02-24
860199
Since 1960 head impact responses under the action of various forces have been studied analytically. However, the effects of force distribution upon head injury mechanisms have not been studied because measurements of force distribution during head impacts have not been experimentally available. In the past, several methods were tested in order to measure head contact pressure, but the results were not very useful. Since the skull is a composite shell structure, the thin shell theory may be valid for stress analysis. According to the theory, the influence of an external load on a shell element damps out rapidly as the distance between the load and the element increases. Stress concentrations occur in the shell elements directly under the center core area of a localized external load. Therefore, the force on the center core, not the entire force distribution, is critical for the assessment of skull responses.
Technical Paper

A Search for Priorities in Crash Protection

1982-02-01
820242
This paper presents the methodology and results of an analysis of the available information on motor vehicle safety which could be used to provide a basis for establishing priorities for future Government and private sector efforts directed at enhanced crash protection. The work was stimulated by several factors: (1) 5 years have elapsed since the National Highway Traffic Safety Administration (NHTSA) published a plan for motor vehicle safety research and development, (2) motor vehicles have changed substantially over the past several years, (3) the quantity and quality of accident data and vehicle crash performance information have increased dramatically over the past 5 years, and (4) Government policies and the amount of Government and private sector resources available for future efforts are changing.
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
Technical Paper

A Database for Crash Avoidance Research

1987-02-23
870345
A database derived from information obtained in state police accident reports has been developed to support problem identification and counter-measure development in crash avoidance research. This database is sufficient in size to permit analyses of the relationship between specific vehicle design characteristics and crash involvement. Preliminary analyses of this database suggest that is is comparable with the nation's crash experience.
Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
X